Curvature, Diameter and Betti Umbers

نویسنده

  • MICHAEL GROMOV
چکیده

Let V denote a compact (without boundary) connected Riemannian manifold of dimension n. We denote by K the sectional curvature of V and we set inf K = ird~ K(-r) where 9 runs over all tangent 2-planes in V. One calls V a manifold of non-negative curvature ff inf K>~0. This condition has the following geometric meaning. A n n-dimensional Riemannian manifold has non-negative curvature iff for each point v ~ V there is a positive number e and a map f of the n-dimensional Euclidean e-ball B into V with the following two properties: (a) f sends B diffeomorphicly onto the e-ball in V with the center v. (b) The map f is distance non-increasing, that is for any two points x and y in B one has.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical points of distance functions and applications to geometry

8. Introduction Critical points of distance functions Toponogov's theorem; first application:a Background on finiteness theorems Homotopy Finiteness Appendix. Some volume estimates Betti numbers and rank Appendix: The generalized Mayer-Vietoris estimate Rank, curvature and diameter Ricci curvature, volume and the Laplacian Appendix. The maximum principle Ricci curvature, diameter growth and fin...

متن کامل

m at h . D G ] 1 3 Se p 20 02 Curvature , diameter , and quotient manifolds

This paper gives improved counterexamples to a question by Grove ([11], 5.7). The question was whether for each positive integer n and real number D, the simply connected closed Riemannian n-manifolds M with sectional curvature ≥ −1 and diameter ≤ D fall into only finitely many rational homotopy types. This was suggested by Gromov's theorem which bounds the Betti numbers of M in terms of n and ...

متن کامل

Construction of Manifolds of Positive Ricci Curvature with Big Volume and Large Betti Numbers

It is shown that a connected sum of an arbitrary number of complex projective planes carries a metric of positive Ricci curvature with diameter one and, in contrast with the earlier examples of Sha–Yang and Anderson, with volume bounded away from zero. The key step is to construct complete metrics of positive Ricci curvature on the punctured complex projective plane, which have uniform euclidea...

متن کامل

On the structure of Riemannian manifolds of almost nonnegative Ricci curvature

We study the structure of manifolds with almost nonnegative Ricci curvature. We prove a compact Riemannian manifold with bounded curvature, diameter bounded from above, and Ricci curvature bounded from below by an almost nonnegative real number such that the first Betti number having codimension two is an infranilmanifold or a finite cover is a sphere bundle over a torus. Furthermore, if we ass...

متن کامل

Orbifolds with Lower Ricci Curvatur E Bounds

We show that the first betti number b1 (0) = d im H 1(0, !R) of a compact Riemannian orbifold 0 with Ricci curvature Ric(O ) ~ -(n 1)k and d iameter diam(O) :5 D is bounded above by a constant r (n, kD2 ) ~ 0 , depending only on dimension , curvature and diameter. In the case when t he orbi fold has nonnegative Ricci curvature, we show that the b1 (0) is bounded above by the dimension dim 0 , a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007